
- 10 -

IMAP and POP

POP
POP3 is still commonly used by ISP’s (Internet Service Providers) as a means for mail clients to

retrieve mail from a mail server. POP3 utilizes port 110 (unencrypted, not secure or opportunistic

TLS) or port 995 (secure, encrypted) for connecting to a server, so the client could potentially use

either a secure or an insecure connection when retrieving emails. Generally speaking, Outlook

users with an Exchange mailbox do not use POP3 nor is it recommended. MAPI, RPC over HTTP or

MAPI over HTTP are the preferred methods to access a mailbox. POP3 is either used by older

clients, clients on Operating Systems other than Windows or by applications that retrieve mail for

a special purpose.

POP3 was created quite a long time ago and is beginning to show its age in the form of negative.

The perception is that the number of apps or clients that connect using this method is declining.

Here is a short list of limitations:

1. Download and Delete: POP3 clients initiate a download of messages from the server. Once

downloaded the emails are removed from the server that hosts the emails. While some ISP’s and

POP3 providers have put in delays for when messages are removed, the messages will be removed

and the only copy will be the local copy.

2. Limited client connectivity as only one device can download the emails.

For the purposes of scripting, we may not care about these deficiencies. Most Exchange engineers work with POP3 in three

scenarios (1) setting up the initial configuration which means deciding on a login method, security (or no security) and then

testing with the application needing the connection, (2) troubleshooting an existing POP3 setup or (3) checking for POP3

connections to see if that service needs to be moved to the new servers a client is deploying.

The following scenario we will cover the third scenario and build a script to look at the POP3 logs. By examining the POP3

logs of an Exchange server, we can see if the service is being used and even report back what servers or clients are using

POP3 to pull email from the Exchange server.

Discovering POP3 Connections
Scenario - Migrating email from Exchange 2013 to Exchange 2019 (based on real world experiences)

Goal - Discover if apps are using POP3

Why? - Make sure all services are moved to 2019

How to accomplish the goal?

For our scenario we need to discover what applications, servers or computers are attempting to connect to Exchange 2013

so we can replicate these connections in Exchange 2019. First we need to start out with what we know about Exchange

2013's POP3 and IMAP feature. We know there are two services that Exchange uses to allow client connections. First one is

called 'Microsoft Exchange POP3' and the second service is called 'Microsoft Exchange IMAP4'. We need to first check to

see if these services are running on the server. We can do this with the Services.msc MMC console or we can do it with

PowerShell.

 Chapter 10: IMAP and POP 2

Discovering properties on these services is easy with PowerShell:

How do we know what PowerShell cmdlet to use? Using what was discussed previously in the book, we can run:

Get-Command *Service*

Note: The use of the ‘*’ wildcard symbol which confers any amount and type of characters before the word ‘service’.

This will give us a list of PowerShell cmdlets with the word 'service' in it. Here is the list of cmdlets we can use:

Get-Service New-Service Restart-Service
Resume-Service Set-Service Start-Service
Stop-Service Suspend-Service

We can further improve our cmdlet search by just looking for GET cmdlets as these are informational:

Get-Command Get-*Service*

This gives us GET cmdlets with the word 'service' in it:

Get-ClientAccessService Get-FrontendTransportService
Get-MailboxTransportService Get-SMServerService
Get-TransportService Get-Service

From the above list we want 'Get-Service'. If you don't know the exact name of the service, try to perform similar search as

we did for the Get-Service cmdlet, using the keyword ‘POP’:

Get-Service *Pop*

On the Exchange 2013 server, one service is returned from the above query:

These cmdlets establish that POP3 services are running on the server. How do we find configuration settings which will lead

us to connection information? To find the command for POP settings, try:

Get-Command *Pop*

 Chapter 10: IMAP and POP 3

Which displays these relevant cmdlets:

Get-PopSettings Set-PopSettings
Test-PopConnectivity Pop-Location

TIP: Different ways to display settings for POP3 are listed below.

Format Table (FT) presents the settings for POP3:

While Format List (FL) presents the settings for POP3 as a list:

The command needed to find POP3 settings is:

Get-PopSettings

We need detailed information from each cmdlet. In order to get this, we need to add '| fl' to the end of each cmdlet. For

POP3 the log location is revealed (in this particular Exchange installation) to be:

Make sure that Protocol logging (a verbose log of all connections on a particular protocol) is enabled, this is not a default

setting. To enable logging for POP3 run this PowerShell cmdlet:

Set-PopSettings -ProtocolLogEnabled $True

Don't forget to restart the POP service, otherwise the log directories don’t get created:

Restart-Service MSExchangePOP3

If there are log files in the directory, PowerShell can parse these files looking for relevant values. First, we need to get the

location of the files to work with:

 Chapter 10: IMAP and POP 4

Note: The .logfilelocation is a specific property retrieved by Get-PopSettings/

Once we have the location of the POP3 log files, we can get a full list of the files using the Get-ChildItem cmdlet (which

provides ‘child’ items under a specified folder):

Get-ChildItem $Location

The above cmdlet, using the file location stored in $location and provides this result:

If there is more than one file present, we will need to be able to store the above information and analyze each of the POP3

log files for the CIP (Client IP Address). We will store the results in a variable called $files:

$Files = Get-ChildItem $Location

We now have a list of files to work with. With PowerShell we can use the Foreach loop to examine each file. Code to execute

on each file will be placed in the brackets ‘{ }’.

Foreach ($File in $Files) { }

Once in the loop, we need to get the name of the file from the current line in the $files array:

$Name = $File.Name

Note: '.name' is a property of the $File variable

We now have the file location ($location) and the name of the current POP3 file ($name) and need to store this into the

$Csv variable so we can search each line for the CIP value:

$Csv= Import-Csv (Join-Path $Location $Name)

Note: Join-Path allows us to join the two variables $Location (the path) and $Name (the child path) together with a '\'

delimiter to make a completely new file path.

The $Csv variable will have a lot of lines to review, so we can loop using the Foreach command to review each line in the

current POP3 log file:

Foreach ($Line in $Csv) {

The POP3 log files contain some commented lines, with '#' at the very beginning of the lines. PowerShell can ignore these

lines with some help:

If ($Line -Like "#") { }

The above line looks for a line with '#' in it and skips it due to the empty values. This process will happen as we loop through

each line in the CSV. Below is a sample version of an Exchange 2013 POP3 log file. Notice the lines with a '#' in front of them:

 Chapter 10: IMAP and POP 5

Note: How variables store data:

If the line in the CSV file does not have a '# in front of it, we can process it. To do so we can use an 'Else {' code section. This

new section of code will work with lines with no '#' in front of it.

Else {

Here we are isolating the CIP (Client IP) value. The $info variable will store the CIP value in the current line of the current log

file:

$Info = $Line.Cip

Part of troubleshooting the script is to remove bugs or workaround that data that is ingested into variables. In this case,

$Info has a value of CIP for the first line. This line effectively says if $info does not have a value of 'cip' then do these steps.

If ($Info -ne "Cip") {

This line will loop through all the values in the $info variable. Without this step, we would receive an error about indexing a

null array as well a perform a certain operation on the data.

Foreach ($Value in $Info) {

While working on this section of code, an error was generated in testing:

 Chapter 10: IMAP and POP 6

PowerShell ran into an issue and the solution is to loop through the variable as it is an array of values. The 'Cannot index

into a null array' is the clue. The fact that the variable is an array provides an opportunity to work with the data better in a

loop. The Foreach loop will allow PowerShell to go through each line and process it correctly.

This line will allow us to split the $value variable into chunks, using the ':' character as the splitting point. 0x003A stands for

the ':' character.

$ID = $Value.Split([Char]0x003A)

Data in the $Value variable prior to splitting:

$ID[0] is the first value stored in the $ID array. ($ID[1] would be the port number, which is column 1 above):

$CIP = $ID[0]

This data looks like this:

 Chapter 10: IMAP and POP 7

Here we are combining all of the values found in $Cip and storing them in an array called $CipResults:

$CipResults += $Cip

Because we are storing variables in the $CipResults variable, we also need to define the variable as an array. It is not

uncommon to have to define this after a script is almost complete especially if the data type to be stored in a variable are

not known. The best practice is to place these lines at the top of the script:

$CipResults = @()

After the script reads all the POP3 log files and stores the information in a variable (this part could take time depending on

the number of log files and size of the files that were are searching through). PowerShell can now display a list of the CIP

values:

$CipResults | Sort -Unique

This line will take the values in $CipResults, find all unique values and sort them. If for example, if the data set looked like

this:

192.168.0.43,192.168.0.43,192.168.0.43,192.168.0.45,192.168.0.46,192.168.0.46,192.168.0.43
,192.168.0.47

You would see this displayed at the end:

192.168.0.43 192.168.0.45 192.168.0.46 192.168.0.47

Final Script
Define Variables
$CipResults = @()
Get Files for parsing
$Location = (Get-PopSettings).LogfileLocation
$Files = Get-ChildItem $Location
Loop for each file to get IP Addresses
Foreach ($File in $Files) {
$Name = $File.Name
$Csv= Import-Csv (Join-Path $location $name)
Foreach ($Line in $Csv) {
If ($Line -Like "#") { }
Else {
Get the Client IP
$Info = $Line.Cip
If ($Info -ne "Cip") {
Foreach ($Value in $Info) {
Client IP also contains the port number which we will remove here
$ID = $Value.Split([Char]0x003A)
$CIP = $ID[0]
$Cipresults += $cip
}
}
}
}
}
Optional - Remove Duplicates
Write-host "List of IP Addresses that connect to the POP3 Service of all the Exchange 2013
 Servers." $cipResults | Sort -Unique

 Chapter 10: IMAP and POP 8

Results produced by the script:

Limitations and How to Overcome Them
The PowerShell script used for determining POP3 Connections is written to query one local server. What if the Exchange

organization contains a large number of servers? In a large migration, that could be a problem. Do we want to run the script

separately on each server? Or do we want to use PowerShell to handle multiple queries?

How do we overcome this problem?

First, since this scenario is built off Exchange 2013 (in a migration to Exchange 2019), we'll assume we need to check each

Exchange 2013 server for the same information. A common solution when dealing with a large number of servers is running

a loop with the code run against each server. There are exceptions, but in general expanding the same code to be run

against multiple objects is one of the main advantages of PowerShell. First, a list of Exchange Servers is needed in order to

know what servers are being queried in the script:

Get-ExchangeServer

Unfortunately, we get all Exchange Servers even the Exchange Server 2019 servers. We need to filter those servers out and

leave only 2013 servers behind. Exchange 2013 Servers have the value of "Version 15.0 (Bu…)" for the AdminDisplayVersion

property (last column in the above screenshot). To get just those Exchange 2013 servers the Get-ExchangeServer cmdlet, is

used and a filter is employed to get the results for that property, with that value:

Get-ExchangeServer | Where {$_.AdminDisplayVersion -Like "Version 15.0*"}

Now that the list contains just Exchange 2013 servers the 'Name' property is all we need. Refining the results again, we place

brackets '(' ')' around the previous one-liner which allow us to pick a property from the servers, in this case 'name':

(Get-ExchangeServer | Where {$_.AdminDisplayVersion -Like "Version 15.0*"}).Name

Next will be to store the server names in a variable called '$Servers':

$Servers = (Get-ExchangeServer | Where {$_.AdminDisplayVersion -Like "Version 15.0*"}).Name

Then a loop is necessary to process a series of PowerShell cmdlets for each Exchange 2013 server name stored in $Server.

The loop will read in the $servers variable and store the current line of values in a variable called $Server (notice the singular

vs plural). Inside the loop there will be code for the POP3 log analysis.

 Chapter 10: IMAP and POP 9

Foreach ($Server in $Servers) { … insert code here .. }

The next step is to integrate the $Server variable into the script so that each time the Foreach loop reads another name, the

correct settings can be read for the server. Not only do we need to do that, but the file name path will need to be adjusted

to a UNC path in order to be read properly:

Note: new multi-server script shown below:

The results will work the same as the single server script in that multiple servers can now be queried.

Last limitation is there is the 'X' Factor that we do not know how many or how large the POP3 log files would be. For a typical

migration, the last 30 days for connection detection should be sufficient. In this case we would only review logs that are <=

30 days old. To handle this, we would set a time limit using the Get-Date cmdlet and subtracting 30 days from the current

date. We reuse the $path variable which refers to the file location on a remote server.

$Limit = (Get-Date).AddDays(-30)
Get-ChildItem $Path -Recurse | ? { -Not $_.PSIsContainer -And $_.CreationTime -lt $limit} |

Remove-Item

Conclusion for this Script
While the above script was written for Exchange Server 2013, it was written for a migration to Exchange Server 2019. The

same code in the final script works on Exchange 2013, 2016 and 2019. This was verified in multiple test labs prior to putting

this code in our book.

 Chapter 10: IMAP and POP 10

Summary of cmdlets used:

Get-ExchangeServer
Get-POPSettings
Get-ChildItem
Import-Csv
Write-Host

IMAP4
We’ve covered POP3, but now IMAP4 deserves attention as we are more likely to find clients connecting with IMAP4 versus

POP3. In the POP3 section we were able to track down the logs and write a script to find any client connections using that

protocol. Let’s see what it takes to accomplish the same task with IMAP4. We will skip some of the above steps as we’ve

‘worked out the kinks’ in the way the script needs to run.

IMAP is a more modern protocol and tends to be the protocol used by mail servers that are not Exchange Servers. IMAP

also operates in a different manner than the previous POP3 protocol. It does not download email from the mail server and

delete it from the server. This allows for multiple clients (think multiple computers and mobile devices) to connect to the

same email account and not have to worry about mail being missing. In our BYOD and multiple device age, the IMAP4

protocol provides a superior end user experience to POP3.

IMAP uses ports 143 (insecure, unencrypted or opportunistic TLS) and 993 (secure and encrypted). Commonly an ISP’s (like

Google) uses IMAP, as do many mail servers that run on Mac servers, Exchange server and Office 365 can enable it as well.

Similar to POP3, most engineers deal with IMAP4 for initial setup, troubleshooting and migrations. Like POP3, we will start

with discovering IMAP4 connections.

Script Re-Usability
IMAP is similar enough in Exchange that the script used for POP3 can be re-used to handle IMAP4 logs on the same

Exchange servers. After reviewing the code for the script, the only lines that needed to be changes were:

$Location = (Get-POPSettings -Server $Server).LogFileLocation

Which becomes:

$Location = (Get-IMAPSettings -Server $Server).LogFileLocation

And then the description line at the bottom of the script:

Write-Host "List of IP Addresses that connect to the POP3 Service of all the Exchange 2013
 Servers."

Which becomes:

Write-Host "List of IP Addresses that connect to the IMAP4 Service of all the Exchange 2013
 Servers."

Really, that was it. The rest of the lines in the script dealt with querying server names, parsing log files and summarizing

results. The similarities were key in the area of log files that POP3 and IMAP4 use. This very little effort was needed to create

two completed scripts, which report on two different protocol connections for Exchange Servers.

 Chapter 10: IMAP and POP 11

IMAP4 Script Code
Define Variables
$CipResults = @()
$Location = (Get-IMAPSettings).LogFileLocation
$Files = Get-ChildItem $Location
Loop for each file to get IP Addresses
Foreach ($File in $Files) {
$Name = $File.Name
$Csv = Import-Csv $Location"\"$Name
Foreach ($Line in $Csv) {
If ($Line -NotLike "*#*") {
Get the Client IP
$CIPToValidate = $Line.Cip
If ($CIPToValidate -ne "cip") {
Foreach ($Value in $CIPToValidate) {
Client IP also contains the port number which we will remove here
$ID = $Value.Split([Char]0x003A)
$CIP = $ID[0]
$CipResults += $Cip
}
}
}
}
}
Optional - Remove Duplicates
Write-Host "List of IP Addresses that connect to the IMAP4 Service of all the Exchange 2013
 Servers."
$CipResults | Sort -Unique

Results for the IMAP version of the script:

POP3 and IMAP4 Reporting
While finding the connections made by clients or servers to Exchange Servers can be useful for long term maintenance or

documenting settings for these services. The documentation can be as simple as a formatted list report created in PowerShell

as complex as a complete export of settings with these settings extracted and then reformatted into an HTML report for

server documentation purposes.

POP3 Setting
Going back to the beginning of this chapter we know we can run these commands to begin our analysis:

Get-Service *Pop*
Get-POPSettings

The Get-Service command is good, but it is not nearly detailed enough for providing information. Using WMI or CIM queries

are a better bet as more information is stored:

Get-WmiObject Win32_Service -Property * | Where {$_.Name -Like "*pop*"} | Select *

Note: Notice the use of the ‘Win32_Service’ class in the above command. To find the appropriate class see the WMI/CIM

chapter.

 Chapter 10: IMAP and POP 12

While the amount of information may seem overwhelming, the Get-WmiObject command enables us to pick the needed

details. Take some time to review each line as this information may come handy with future queries. The service account, if

there is a service account, is shown as “StartName” and the path to the executable that is linked to the service on the server

is listed as “PathName”.

Get-WmiObject Win32_Service -Property * | Where {$_.Name -Like "*pop*"} | Select Caption,
 SystemName, StartMode, State, StartName, PathName | fl

This cmdlet reveals some key information about the POP3 services on an Exchange 2019 server:

 Chapter 10: IMAP and POP 13

Next the ‘Get-PopSettings | fl’ one-liner will provide the remaining information on POP3 for the Exchange server:

Depending on what the POP3 server is used for or what clients are connecting, settings can be chosen for documentation

purposes. Here is a sample of the above services:

Get-POPSettings | Fl Server,ProtocolName,X509*,Login*,LogFileL*,Unen,SSL*,*authe*

If there are multiple Exchange 2019 servers present, the above one-liner’s won’t be as useful because the commands only

run locally and not globally against a larger environment. That is, unless these commands are modified to handle more than

one server. Several available options present themselves in order to solve this conundrum.

(1) Loop
$Servers = Get-ExchangeServer
Foreach ($Server in $Servers) {
Get-PopSettings -Server $Server | fl Server, ProtocolName,x509*,logint*, logfilel*,
unen*,SSL*,*authe*
}

 Chapter 10: IMAP and POP 14

(2) One liner
Get-ExchangeServer | Get-PopSettings | fl Server, ProtocolName, x509*, logint*, logfilel*,
 unen*, SSL*, *authe*

Both of these methods create the same results in the end:

If a POP3 connection is failing, use this command to review the LoginType and X509 certificate, as well as the Unencrypted

and SSL bindings. If your POP3 application does not support a secure login, we need to change the options with ‘Set-

POPSettings’ (see the next page for examples):

Before:

Run this command to change the LoginType (to handle the different connection type):

Set-PopSettings -LoginType PlaintextLogin

After:

Remember to utilize Get-Help <command name> -Full in order to get information on what options are available for a

particular PowerShell cmdlet. For converting single server queries to multiple server queries:

 Chapter 10: IMAP and POP 15

IMAP4 Setting
IMAP4 in Exchange Server 2019 contains a similar set of cmdlets and configuration data to POP3. As such, we can use very

similar cmdlets to work on the IMAP4 like POP3.

Get-Service *IMAP*
Get-IMAPSettings

We know from the POP3 section that the Get-Service command is good, but it is not nearly detailed enough for providing

information. Using WMI or CIM queries are a better bet as more information is provided when compared to the *-Service

cmdlets, such as checking the startup mode of services (StartMode):

Get-WmiObject Win32_Service -Property * | Where {$_.Name -Like "*imap*"} | Select *

 Chapter 10: IMAP and POP 16

Just like POP3, we can use the Get-WmiObject command to help pick the needed details. The service account, if there is a

service account, is shown as “StartName” and the path to the executable that is linked to the service on the server is listed

as “PathName”.

Get-WmiObject Win32_Service -Property * | Where {$_.Name -Like "*imap*"} | Select Caption,
 SystemName, StartMode, State, StartName, PathName | fl

This cmdlet reveals some key information about the IMAP4 services on an Exchange 2019 server:

Next the ‘Get-IMAPSettings | fl’ cmdlet provides the remaining information on IMAP4 for the Exchange Server:

 Chapter 10: IMAP and POP 17

Depending on what the IMAP4 server is used for or what clients are connecting, settings can be chosen for documentation

purposes:

Get-IMAPSettings -Server $Server| fl Server,ProtocolName,x509*,Logint*,Logfilel*,
Unen*,SSL*,*Authe*

Just like we did with POP3, if there are multiple Exchange 2019 servers present, the above one-liner’s won’t be as useful

because the commands only run locally and not globally against a larger environment. That is, unless these commands are

modified to handle more than one server. Several available options present themselves in order to solve this conundrum.

(1) Loop
$Servers = Get-ExchangeServer
Foreach ($Server in $Servers) {
Get-IMAPSettings -Server $Server | fl Server, ProtocolName, x509*, Logint*, Logfilel*,
 Unen*, SSL*, *Authe*
}

(2) One liner
Get-ExchangeServer | Get-IMAPSettings | fl Server, ProtocolName, X509*, Logint*, Logfilel*,
 Unen*,SL*, *Authe*

Both of these methods create the same results in the end:

 Chapter 10: IMAP and POP 18

If an IMAP4 connection is failing, use this command to review the LoginType and X509 certificate, as well as the Unencrypted

and SSL bindings. If your IMAP4 application does not require a secure login, the options need to change.

Testing POP3 and IMAP Connections
Exchange Server 2019 includes a series of test-xxx cmdlets that enable an Exchange admin to test various parts of Exchange

to make sure they are functional. Utilizing these cmdlets would allow the construction of a server health script. After prepping

the environment for testing, the Test-IMAPConnectivity cmdlet will now generate results. The results would quickly show

what mailboxes have IMAP and which have POP3 enabled. On Exchange 2019 servers, POP3 and IMAP4 are disabled and

the test cmdlets reveal this configuration:

IMAP4

Test-ImapConnectivity -ClientAccessServer:19-03-EX01 |Ft -Auto

POP3

Test-POPConnectivity -ClientAccessServer:19-03-EX01 |Ft -Auto

In a troubleshooting scenario, this cmdlet could verify that a service is up and connections are good. If one user reports an

issue, the command can be tailored to that one user. To do so, specifying credentials will enable the test cmdlet to connect

to the POP3 or IMAP4 services with those credentials, effectively impersonating the user (place this at the end of the IMAP4

and POP3 one-liners above):

-MailboxCredential:(Get-Credential 19-03\administrator)

If this command succeeds and the user still cannot connect, comparing the settings on the application being used to the

service settings is key. Specifically looking at the LoginType. Some applications will not handle ‘SecureOnly’ (the encrypted

version of POP3 or IMAP4) well at all.

 Chapter 10: IMAP and POP 19

Note: If while running test cmdlets, this error occurs:

This means we need to create a test account, as the error message states, using the new-TestCasConnectivityUser.ps1 script:

IMAP4 and POP3 – User Settings
One of the often forgotten PowerShell cmdlets is Get-CASMailbox. Seems like an odd cmdlet, but it turns out to be very

convenient. The Get-CASMailbox can be quite useful in providing information on what protocols a user with a mailbox can

use to connect to an Exchange 2019 server - but on a mailbox level and not a server level. In the above screenshot, all

mailboxes are enabled for EAS (ActiveSync), OWA, POP, IMAP and MAPI. If one were to run a simple one-liner like this:

Get-Mailbox | Get-CASMailbox

Wait. What? Get-CASMailbox? CAS did stand for Client Access Server, a role that existed in Exchange Server 2013? However,

this command is used for some special operations on mailboxes in Exchange Server. In some sense it is a holdover purely

based on its name. The command is useful for managing mailboxes in Exchange 2019. Get-CASMailbox can also reveal

other properties of a mailbox like:

OWAMailboxPolicy OWAforDevicesEnabled ECPEnabled
MapiHttpEnabled UniversalOutlookEnabled EwsEnabled
EwsAllowOutlook EwsAllowMacOutlook EwsAllowEntourage
EwsApplicationAccessPolicy EwsAllowList EwsBlockList
ShowGalAsDefaultView … and more …

 Chapter 10: IMAP and POP 20

How can these properties be utilized? Let’s take a scenario where a company has put in place a policy that restricts the use

of certain protocols with their new Exchange 2019 servers. IT wants to restrict POP3 and IMAP access. There is a small subset

of users that require the use of these protocols and IT wants to limit IMAP and POP protocols. Lastly, we need to accomplish

these goals with PowerShell, and it needs to be scalable.

Where To Start
Each protocol will have two groups of users – those that have access and those that do not. The first step would be to group

users that should have access as this group will be the easiest to build and maintain rather than trying to maintain a group

of those to block access to a resource. In Active Directory, create a group called “POP3 Access” and another call “IMAP

Access”. We then add users who will have access to these resources like so: (using Active Directory Users and Computers).

Now that the groups are populated with users a script will be needed to enforce these access conditions. What is needed in

order to build the script?

1. Need to store this user list in a variable to determine access or use the group name in the script as the determining

factor for access in the script.

2. What access should be granted or denied depending on members?

 Chapter 10: IMAP and POP 21

3. What commands we can use to query this information in Exchange?

4. What commands we can use to add or remove access to the resource?

5. How often do we would want to reinforce this action?

PowerShell Cmdlet Determination
Storing the names of users who need access or using the group name?

Using a group name is far easier than storing the list of names. The reason to do this is if PowerShell were to cycle through

each mailbox to determine access, it would be easier to see if they are a member of a group (single comparison) versus

comparing a list of uses (multiple comparisons). The single comparison method is much faster. Storing the group name in

a variable is step one in the script build:

$POP3AccessGroup = “POP3 Access”

What access should be granted or denied depending on group membership?

In this case, the requirement was to allow certain user’s access to POP3 and block all other users from using POP3. Going

back to the Get-CASMailbox cmdlet, ‘OWA Enabled’ is an option that can be configured on a mailbox. Get CASMailbox has

a set-command for changing settings – Set-CASMailbox. Not knowing what options can be configured, we can try two

options. One is to run this:

Get-Help Set-CASMailbox -Parameter *

Or we can type in the below syntax and then hit the Ctrl and Spacebar at the same time to reveal all parameters:

Looking closely at the options we see IMAPEnabled and POPEnabled. Both have two settings - $True and $False. We can set

these values for each mailbox on the Exchange 2019 Servers.

With the base command figured out, the next step is to use these cmdlets to set the access for all mailboxes or for some

mailboxes based off of group membership. How can group membership be verified?

What commands we can use to query this information in Exchange?

First, get a list of groups a user is in using the ‘memberof ’ property:

$MemberOf = (Get-ADUser -Identity (Get-Mailbox Administrator).Alias -Properties
 Memberof).MemberOf

What commands can we use to add or remove access to the resource?

As discussed above, one PowerShell cmdlet and two parameters will allow for the changing of access to IMAP or POP:

Set-CasMailbox –IMAPEnabled $True
Set-CasMailbox –POPEnabled $True

$False would be used to disable access to those not in the AD Group.

 Chapter 10: IMAP and POP 22

Putting it together
Then, using the names of the groups stored in $MemberOf, check for any groups that match our POP3 Access groups and

then set POP3access:

If ($MemberOf -Like "*POP3 Access*") { Set-CasMailbox $Alias –POPEnabled $True}

Putting these pieces together, we can create a script like this: (note we are excluding the Discovery mailbox as well)

$Mailboxes = Get-Mailbox | where {$_.Name -NotLike "DiscoverySearchMailbox*"}
Foreach ($Mailbox in $Mailboxes) {
Get all groups a user is a 'member of'
$MemberOf = (Get-ADUser -Identity (Get-Mailbox $Mailbox).Alias -Properties

MemberOf).MemberOf
If the user is in the POP Access group enable access and if not ('Else'), disable access
If ($MemberOf -Like "*POP3 Access*") {
Set-CasMailbox $Mailbox –POPEnabled $True
} Else {
Set-CasMailbox $Mailbox –POPEnabled $False
}
}

Note: That we are excluding the Discovery mailbox as well and the POP3 Access lines can be compressed into one line

where the $True or $False value from $MemberOf could be applied to the PopEnabled value for the mailbox:

Set-CasMailbox $mailbox –POPEnabled ($MemberOf -like "*POP3 Access*")

Prior to running the above script, validate who has the setting enabled or disabled: (note what mailboxes are disabled)

The POP Access group has these members:

After the script is run, ONLY Damian and Lance would get POP3 access, all others remain disabled ($False).

 Chapter 10: IMAP and POP 23

As expected, the results produced are what IT had given as a task. Now, to do the same for IMAP, the script has a couple of

lines changes:

$Mailboxes = Get-Mailbox | Where {$_.Name -NotLike "DiscoverySearchMailbox*"}
Foreach ($Mailbox in $Mailboxes) {
Get all groups a user is a 'member of'
$MemberOf = (Get-ADUser -Identity (Get-Mailbox $Mailbox).Alias -Properties
 MemberOf).MemberOf
If the user is in the IMAP Access group enable access and if not ('Else'), disable access
If ($MemberOf -like "*IMAP Access*") {
Set-CasMailbox $Mailbox –IMAPEnabled $True
} Else {
Set-CasMailbox $Mailbox –IMAPEnabled $False
}
}

Before the script:

After the script:

How often we would want to reinforce this action?

Once the script is created, we would then need to decide how and when to enforce these settings. Running the script weekly

and daily would be ideal from a restrictive access view. The script can be deployed as a cleanup tool or enforcement tool

using the Windows Scheduler, setting up jobs to handle these changes on a weekly or daily basis.

 Chapter 10: IMAP and POP 24

Client Access Rules
Client Access Rules are something new to Exchange Servers. These rules control access to Exchange Services by various

client types. Client Access Rules are like Transport Rules for SMTP mail flow. We can create conditions and actions to affect

access and authentication with Exchange 2019. Online documentation for this cmdlet can be found here:

https://docs.microsoft.com/en-us/powershell/module/exchange/client-access/new-clientaccessrule

PowerShell Cmdlets
Configuring Client Access Rules is only possible in Exchange PowerShell. There is no option or viewable configuration in the

Exhange Admin Center for Exchange 2019. Let's see what PowerShell cmdlets are available for us:

Get-Command *ClientAccessRule

Which reveals these cmdlets for working with Client Access Rules

Get-ClientAccessRule New-ClientAccessRule
Remove-ClientAccessRule Set-ClientAccessRule
Test-ClientAccessRule

If we run Get-ClientAccessRule, the first cmdlet we are listed above, in a Greenfield environment we should find no Client

Access Rules configured. This is the default and expected configuration for Exchange 2019. Now, what if we wanted to create

new Rules? What can we do and what is their expected usage?

New-ClientAccessRule

Let's review what we have available in Examples and Parameters for this cmdlet:

Examples:

Parameters Available

Note: Be careful when creating rules that block PowerShell access. If you create a rule that block PowerShell access to where

you cannot connect, you will have to open a support case with Microsoft. The first example use case for the Client Access

https://docs.microsoft.com/en-us/powershell/module/exchange/client-access/new-clientaccessrule

 Chapter 10: IMAP and POP 25

Rule cmdlet, shows how to avoid this by allowing PowerShell access with a Priority of 1. Subsequent rules will be overridden

by this rule.

Some basics on Client Access Rules and what they can affect:

Exchange Protocols
ExchangeActiveSync ExchangeAdminCenter
ExchangeWebServices IMAP4
OfflineAddressBook OutlookAnywhere
OutlookWebApp POP3
PowerShellWebServices RemotePowerShell
REST

Authentication Types
AdfsAuthentication BasicAuthentication
CertificateBasedAuthentication NonBasicAuthentication
OAuthAuthentication

Client Access Rules can be applied against all allowable protocols and authentication types and can also include exceptions

to these protocols or authentication. In addition to protocols and authentication types, we can also build rules based on IP

Ranges and User Name matches.

Before we begin, we should apply the first example Client Access Rule to our environment, to protect ourselves from any

mistakes or typos that may lock us out of PowerShell:

New-ClientAccessRule -Name AllowRemotePS -Action Allow -AnyOfProtocols RemotePowerShell -

Priority 1

Now, let's explore some sample scenarios and what we can do with Client Access Rules.

Example 1

For this example, we need to restrict the use of the Exchange Admin Center (EAC) to only internal connections. The IT

Department has their own subnet for IT computers - 10.0.0.x/24. Further we need to restrict the EAC to only users in IT

Department as well, for further security. For the last option, we can use the 'UserRecipientFilter' parameter.

New-ClientAccessRule -Name 'EAC Restriction' -Action Deny -AnyProtocols ExchangeAdminCenter -

ExceptAnyOfClientIPAddressesOrRanges 10.0.0.0/24 -UserRecipientFilter {Department -ne 'IT'} -Priority 2

Notice that we have the IT IP Range Excluded (ExceptAnyOfClientIPAddressesOrRanges) and excluded the IT Department

from the Deny Access (UserRecipientFilter). Lastly the Rule priority was set to 2, being preceded by the Remote PS rule.

If we check two users to see what their experience is, we can validate whether or not we have the rules correct. A blocked

user will see this:

 Chapter 10: IMAP and POP 26

Note: When the first Client Access Rules are created, it can take time for them to go into effect. From Microsoft: "To improve

overall performance, Client Access Rules use a cache, which means changes to rules don't immediately take effect. The first

rule that you create in your organization can take up to 24 hours to take effect. After that, modifying, adding, or removing

rules can take up to one hour to take effect."

Source: https://docs.microsoft.com/en-us/exchange/clients/client-access-rules/client-access-rules?view=exchserver-2019

Example 2

For this scenario we want to restrict all protocols to internal company subnets which comes as a directive from the security

department. The only exception to this rule will be for a select group of personnel that have CustomAttribute8 set to

'MobileAllowed'.

In order to perform these tasks, we will need two separate Client Access Rules. Rules that will be needed:

New-ClientAccessRule -Name 'Corp EWAS Exception' -Action Allow -AnyOfProtocols
 ExchangeActiveSync -UsernameMatchesAnyOfPatterns {CustomAttribute8 -eq 'MobileAccess'}
 -Priority 2

And

New-ClientAccessRule -Name 'Corp Deny CAR' -Action Deny -AnyOfClientIPAddressesOrRanges
 10.0.0.0/16 -AnyOfProtocols ExchangeActiveSync, ExchangeAdminCenter, ExchangeWebServices,
 IMAP4, OfflineAddressBook, OutlookAnywhere, OutlookWebApp, POP3, PowerShellWebServices,
 RemotePowerShell, REST -UsernameMatchesAnyOfPatterns {CustomAttribute8 -ne 'MobileAccess'}
 -Priority 3

The Client Access Rules are in order of smallest match first, which in this case is the CustomAttribute. If a user account does

not match that attribute, they will then process the next rule which will then restrict them to internal use of Exchange 2019.

Client Access Rule Verification
Now that we've create some of the rules above, let's review the properties of the Client Access Rules and what we can see

with PowerShell. If we review the 'EAC Restriction' rule, created in Example 1, we can see the configurable properties:

https://docs.microsoft.com/en-us/exchange/clients/client-access-rules/client-access-rules?view=exchserver-2019

 Chapter 10: IMAP and POP 27

It also looks like there are other configurable values, like these:

AnyOfSourceTcpPortNumbers ExceptAnyOfSourceTcpPortNumbers
UserIsMemberOf ExceptUserIsMemberOf.

However, there are not parameters on the New-ClientAccessRule for this. These parameters might be there for future

changes to the Client Access Rule cmdlets or may be reserved for Microsoft internal use. Either way, we cannot gain any

insight into these values at this time.

	- 10 -
	IMAP and POP
	POP
	Discovering POP3 Connections
	How to accomplish the goal?

	Limitations and How to Overcome Them
	Conclusion for this Script

	IMAP4
	Script Re-Usability

	POP3 and IMAP4 Reporting
	POP3 Setting
	IMAP4 Setting

	Testing POP3 and IMAP Connections
	IMAP4 and POP3 – User Settings
	Where To Start
	PowerShell Cmdlet Determination
	Putting it together
	How often we would want to reinforce this action?

	Client Access Rules
	PowerShell Cmdlets
	New-ClientAccessRule

	Client Access Rule Verification

